Разгон озу: программы и утилиты

Понятие латентного периода

Латентный период можно рассматривать в различных контекстах, например:

  • как некоторая часть определенной ситуации, обобщенное явление;
  • в рамках психических реакций;
  • интерпретация в рамках теории психоанализа Зигмунда Фрейда;
  • понятие из медицинской среды и физиологии млекопитающих.

Латентность, как задержка реакции

Сам термин «латентность» происходит от латинского latens, что означает «скрытый». То есть латентный период — некоторое время, которое проходит после того, как возникло некое раздражение, и до то того, как появилась на это воздействие реакция.

В физиологии такой период зависит от многих факторов: генетика, общее состояние организма, особенности его функционирования и протекания различных процессов как в центральных, так и в периферических звеньях. В любом случае учитывается, насколько быстро энергия от внешнего импульса преобразуется в рецепторе, передастся по нервным волокнам, синапсам, как оперативно будет получен ответ от эффекторной клетки

Важно понимать, что под наступлением реакции имеется в виду ее видимая часть, то есть не тот момент, когда рецептор среагировал на импульс, а когда получили осознанный и ощутимый ответ

В психологии скрытность определенных процессов отражается в том, что после испытанного стресса у человека не всегда сразу наступает реакция, страхи и эмоции подавляются и «дремлют» некоторое время. И сам человек, и окружающие могут считать, что произошедшее не повлияло на него или не нашло отражения во внешней социальной жизнедеятельности человека. Но на самом деле реакция может подавляться и латентно накапливаться, а проявляется в самый неожиданный момент.

Такая имплицитность чревата нервными срывами, психологическими расстройствами, развитием фобий. И во многом потому что сам человек далеко не всегда осознает наличие проблемы или ее глубину. А не предупрежден, следовательно, и не вооружен. Почему после трагических событий, серьезных травм или событий, кардинально повлиявших на судьбу человека, часто советуют обратиться к специалисту для выявления и проработки возможных проблем. Психолог может отследить протекание латентных психических процессов и провести их коррекцию, чтобы сгладить реакцию и по максимуму нивелировать неприятные последствия.

Понятие латентности широко используется в экспериментальной психологии, как величина, которую учитывают при проведении исследований. Например, доказано, при определенных когнитивных нарушениях латентность также возрастает на 10-15%.

https://youtube.com/watch?v=qmse4dZSKUY

Латентный период по Фрейду

Психологи, которые придерживаются психоаналитической традиции по З. Фрейду, считают, что латентный период — это промежуток времени между шестью-семью годами и подростковым периодом (около 12-ти лет) ребенка . Он характеризуется тем, что в половом плане наступает время «сна», ребенок направляет свою деятельность в иные русла:

  • социальное развитие — общение со сверстниками,
  • научные познания — учеба в школе,
  • коммуникативность— игры, посещение секций, кружков,
  • физическое развитие — спортивные занятия.

Таким образом, внимание ребенка смещается в сторону от сексуальных тем. Такая имплицитность способствует тому, что поведение ребенка выравнивается, он становится легко обучаем, поддается влиянию, его нетрудно чем-то увлечь. Несмотря на то, что латентность в этот период можно рассматривать как своеобразный плацдарм для личностного и физического развития, сам Фрейд не уделял много внимания изучению поведения, становления человека в этот период

А вот современные психоаналитики считают, что латентность, перенаправляя энергию ребенка в другие сферы жизни, играет роль баланса между влечениями и защитой

Несмотря на то, что латентность в этот период можно рассматривать как своеобразный плацдарм для личностного и физического развития, сам Фрейд не уделял много внимания изучению поведения, становления человека в этот период. А вот современные психоаналитики считают, что латентность, перенаправляя энергию ребенка в другие сферы жизни, играет роль баланса между влечениями и защитой.

Другие проявления латентности

В медицине понятие латентного периода сродни инкубационному периоду, то есть это то время, когда болезнь никак себя не проявляет и протекает скрыто. Исследования в этой области важны для изучения разницы между функционированием здорового и больного организмов. Интересно проявление латентного времени у некоторых млекопитающих — когда самки могут откладывать развитие по факту наступившей беременности, например, до наступления весны.

Специфика процесса

Многие IT-специалисты указывают на то, что производители зачастую устанавливают ограничение на возможность искусственного увеличения производительности. Кроме этого, повышение скорости работы ОЗУ зачастую проводится после разгона установленного процессора. Отдельно обе важные составляющие компьютера разгоняются крайне редко, так как их работа отвечает за основные функции. Что касается видеокарты, то ее подвергают разгону и отдельно — все зависит от того, для обработки каких данных проводится увеличение производительности.

Одной из основных характеристик ОЗУ считают объем, который принято измерять в гигабайтах. Однако на производительность оказывает влияние частота работы, пропускная способность и другие характеристики, которые редко указываются в кратком описании компьютера. Под «разгоном» понимают включение особых режимов работы за счет:

  1. Увеличения показателя тактовой частоты. Как правило, этот параметр изменяется при разгоне процесса, что позволяет использовать его всю вычислительную мощность.
  2. Изменения количества таймингов, которые возникают при одном цикле. При уменьшении этого показателя обмен электрическими сигналами будет проходить гораздо чаще, за счет чего повышается пропускная способность установленных планок.

Некоторые IT-специалисты выделяют метод повышения производительности, который связан с изменением показателей электрического напряжения в установленной микросхеме.

Оптимальные методы разгона

При изготовлении микросхемы рассматриваемого типа могут использоваться самые разные архитектуры, в большинстве случаев можно только максимально повысить тактовую частоту или пропускную способность — обе сразу не получится. Некоторые выбирают компромиссное сочетание устанавливаемых настроек.

Среди основных рекомендаций выделим следующие моменты:

  1. При повышении тактовой частоты придется замедлить тайминг, в противном случае компьютер не будет работать стабильно и есть вероятность потери информации.
  2. При ускорении тайминга показатель тактовой частоты рекомендуют оставить на заводском уровне.

Кроме этого, после проведения работы по разгону компьютера можно заметить, что он начинает работать медленнее. Это связано с тем, что не каждый процессор и ОЗУ предназначены для разгона. В некоторых случаях с заводскими настройками они работают куда лучше и стабильнее.

Что следует знать о частоте ОЗУ

Разгон оперативной памяти ddr3 или другого типа многие проводят для увеличения тактовой частоты. Ее показатель определяет, сколько операционных тактов производит установленная микросхема в секунду. С увеличением данного значения микросхема начинает работать быстрее, время между действием пользователя и откликом устройства снижается.

Производители ОЗУ типа DDR указывают два типа тактовой частоты:

  1. Реальная.
  2. Эффективная.

Показатель эффективной, как правило, в два раза больше реальной. Показатель реальной тактовой частоты редко можно встретить в описании оперативной памяти, для ее определения приходится искать подробную спецификацию или использовать программу мониторинга производительности компьютера.

Рабочее напряжение

Все части компьютера работают исключительно под своим напряжением, для некоторых оно может быть переменчивым. Этот момент следует учитывать при рассмотрении процесса разгона. Ранее распространенный тип памяти DDR 2 работает при 1,8 вольта.

На сегодняшний день распространенная память типа DDR 3 при 1,5 вольта. Специалисты утверждают, что эти пороги можно несущественно превысить. Для DDR 2 выставляется значение 2,2 вольта, для DDR 3 показатель составляет 1,65 вольта.

При превышении этих значение микросхема начнет работать неправильно, могут появиться существенные сбои. Кроме этого, IT-специалисты утверждают, что даже самая качественная микросхема от известного производителя может плохо воспринять повышение напряжения. Поэтому если в этом нет особой надобности, то лучше всего оставлять заводские настройки.

Процесс разгона

Если вы являетесь счастливым обладателем качественно исполненного кита памяти, как, например Corsair Vengeance 3200 МГц, то вас ждет простая и короткая последовательность действий в БИОСе. Достаточно просто выставить соответствующий XMP-профиль в настройках. XMP-профиль — заранее заготовленные разработчиками настройки памяти. Просто выберите нужную вам частоту, и XMP-профиль автоматически подстроит все остальные параметры. Выбрать профиль можно в разделе «OC», подраздел DRAM settings. Если память не поддерживает XPM, то придется подбирать все параметры вручную.

Не забудьте выставить напряжение в разделе «Dram Voltage«. Напоминаем, что рекомендуется не превышать отметку в 1,4 В. Можно сразу же выбрать максимальное значение и в случае стабильности системы убавлять.

Следующим шагом будет повышение напряжения контроллера памяти и L-3 кэша. Параметр называется CPU NB/SoC Voltage. В случае если вы не можете в настройках найти данный параметр, то причиной может быть устаревшая версия БИОСа материнской платы. Например, на материнке Asrock Fatality AB350 Gaming K4 данный функционал открывается только в самой свежей версии БИОСа, которая вышла пару месяцев назад. До этого владельцы такой доски не могли регулировать напряжение контроллера памяти. В среднем, рекомендуемые значения при разгоне находятся в диапазоне от 1,025 до 1,15 В. Точное значение подбирается экспериментальным путем, потому что сильно зависит от чипов памяти.

После всех проделанных манипуляций остается только подобрать соответствующие тайминги (если, конечно, ваши модули не поддерживают XMP). Тут всё зависит от степени разгона. При небольшом оверклокинге достаточно поднять все значения на пару тактов. Скажем, с 16-16-16-39 до 18-18-18-41. В первый раз можно взять с запасом и после прогона стресс-теста снизить значения.

Далее сохраняем изменения в БИОСе, нажав клавишу F10. Если система стартовала успешно, то нужно запустить стресс-тест. С этой задачей справится встроенный бенчмарк в AIDA64. Но лучше воспользоваться специализированным софтом вроде MemTest86. Если после теста всё работает стабильно и без ошибок, то возвращаемся в БИОС, снижаем тайминги и напряжение до тех пор, пока система не откажется запускаться. Таким образом, «методом тыка» мы ищем максимально производительные значения при которых система не вылетает. Далее снова прогоняем тесты, финальным штрихом является тяжелая нагрузка в играх. Если все ОК — потираем ручки и радуемся бонусной производительности.

  • Выжимаем соки из ПК: разгон видеокарты

Как проверить стабильность памяти

Если система запустилась на желаемой частоте с выбранными таймингами, это еще не значит, что она стабильна. Чтобы не словить синий экран в процессе игры или работы — проверяйте стабильность памяти. Стандартные тесты, вроде Aida64 могут и не выявить ошибки в работе ram. Лучше использовать для этого специальный софт, например TestMem5 (программа бесплатная).

Помимо стандартных настроек, существуют и пользовательские конфиги для TestMem. Одним из наиболее популярных считается конфиг от 1usmus. Для его использования — замените содержимое файла MT.cfg в папке bin программы. Стандартные настройки можно забэкапить в другой файл.

Успешным считается прохождение теста, при котором нет ни одной ошибки.

* * *

Как видно, изменять опорную частоту при более-менее
серьезном разгоне памяти приходится практически всегда (а если бы на свете не
существовало Sandy Bridge, это высказывание было бы еще более категоричным).
Да, порою серьезных частот можно достичь посредством одних лишь множителей,
однако шаг между доступными для активации значениями частоты в этом случае
оказывается слишком велик, поэтому для более точного нахождения частотного
потолка все равно приходится шаманить с тактовым генератором. Ну а это, как
известно, приводит к изменению частоты процессора.

Мораль такова: если уж заниматься разгоном памяти серьезно,
то параллельно стоит разгонять и процессор. В самом деле, зачем выжимать все
соки из плашек и одновременно пытаться сдерживать рабочую частоту процессора,
если даже незначительный разгон ЦП даст куда больший эффект, чем все опыты над
памятью? Таким образом, прежде чем браться за разгон памяти, будет неплохо
узнать, какие частоты способен покорить ваш процессор. Ну а после придется
искать баланс между скоростью работы кристалла и частотой/таймингами
оперативки, ведь обычно выставить максимально привлекательные значения обоих
компонентов разом не получается.

Сложно? Что ж, никто не мешает вам просто слегка подкрутить
тайминги или увеличить множитель памяти, а после наслаждаться свалившимся из
ниоткуда быстродействием, не углубляясь в дальнейший разгон компьютера. Не
хотите раскрывать весь потенциал системы — не надо. Ну а господам энтузиастам
мы желаем удачи в этом нелегком, но интересном деле.

Принцип работы оперативки

Random Access Memory (RAM) – оперативная память компьютера, использующаяся для хранения данных, которые обрабатываются программой в реальном времени. Оперативная память не запоминается устройством – это означает, что при выключении компьютера информация, содержащаяся в ней, теряется. Эта память часто называется DRAM из-за принципа работы: одна ячейка памяти содержит конденсатор (емкость), который хранит один бит данных.

Конденсатор, однако, быстро разряжается, поэтому он систематически обновляет содержимое ячейки, перезаряжая конденсатор. Этот процесс называется обновлением памяти и должен выполняться циклически. Также оперативная память характеризуется двумя параметрами: емкостью и временем доступа.

Но возникает вопрос, зачем ПК этот вид памяти и может ли он использовать только один тип памяти, например, жесткий диск. К сожалению, такой компьютер был бы невероятно медленным. Жесткий диск имеет среднюю скорость передачи данных 200-300 Mb/s. (SSD – 600-700 Mb/s.), в то время как скорость ОЗУ – от 12000 до 25000 Mb/s.

Из-за своей скорости оперативная память становится буфером между медленным жестким диском и быстрым процессором. В нее помещаются данные, результаты вычислений, файлы запущенных приложений.

Как изменить

В штатном режиме компьютер получает все настройки оперативной памяти из SPD — микросхемы, которая распаивается на каждом модуле. Но, если есть желание добиться максимальной производительности, целесообразно попробовать изменить тайминги. Конечно, можно сразу приобрести модули с минимальными значениями задержек, но они могут стоить заметно дороже.

Настройки памяти меняются через BIOS персонального компьютера или ноутбука. Универсального ответа: как в биосе поменять тайминги оперативной памяти не существует.

Возможности по настройке подсистемы памяти могут сильно различаться на разных материнских платах. У дешевых системных плат и ноутбуков может быть предусмотрена только работа памяти в режиме по умолчанию, а возможности выбирать тайминги оперативной памяти — нет.

В дорогих моделях может присутствовать доступ к большому количеству настроек, помимо частоты и таймингов. Эти параметры называют подтаймингами, они могут быть полезны при тонкой настройке подсистемы памяти, например, при экстремальном разгоне.

Изменение таймингов позволяет повысить быстродействие компьютера. Для памяти DDR3 это не самый важный параметр и прирост будет не слишком большим, но если компьютер много работает с тяжелыми приложениями, пренебрегать им не стоит. В полной мере это относится и к более современной DDR4.

Заметно больший эффект может принести разгон памяти по частоте, а в этом случае тайминги весьма вероятно придется не понижать, а повышать, чтобы добиться стабильной работы модулей памяти во внештатном режиме. К слову, подобные рекомендации можно встретить при выборе памяти для новых процессоров AMD Ryzen. Тестирования показывают, что для раскрытия потенциала этих процессоров нужна память с максимальными частотами, даже в ущерб таймингам.

Стоит отметить, что далеко не во всех случаях настройка подсистемы памяти даст сколько-нибудь заметный результат. Есть приложения, для которых важен только объем оперативной памяти, а тонкий тюнинг задержек даст прирост на уровне погрешности. Судя по результатам независимых тестирований, быструю память любят компьютерные игры, а также программы для работы с графикой и видео-контентом.

Нужно учитывать, что слишком сильное уменьшение задержек памяти может привести к нестабильной работе компьютера и даже к тому, что он откажется запускаться. В этом случае необходимо будет сбросить BIOS на дефолтные настройки или, если вы не умеете этого делать, придется обратиться к специалистам.

Что установлено сейчас?

Надеюсь, благодаря примерам выше вы стали экспертом по выбору оперативной памяти. А что делать, когда нужно узнать, какая память установлена сейчас?

Если компьютер работает

Можно воспользоваться программой Speccy или аналогичными:

Раздел «Оперативная память» («RAM») в программе Speccy покажет необходимое: тип («Type»), объём («Size»), частоту (DRAM Frequency) и тайминги.

Можно в разделе «Материнская плата» («Motherboard») узнать название материнской платы и поискать её описание на сайте производителя или в Яндекс.Маркете. Если ей поддерживается память с большей частотой, можно смело покупать более быструю память.

Если компьютер с неработающей ОЗУ

Ситуация: у вас на руках компьютер, который не включается, и вы точно знаете, что причина в оперативной памяти. Плата имеется, просто нельзя запустить компьютер и с помощью Speccy увидеть характеристики.

В таком случае, если это настольный компьютер и он не на гарантии, можно снять боковую крышку и аккуратно извлечь плату, открыв защелки по краям разъёма. Понятная без слов инструкция:

С ноутбуками сложнее. Память скрыта за крышкой, закрывающей всё днище ноутбука или за небольшой отдельной. Нужно искать инструкцию к своему ноутбуку и смотреть, чтобы ненароком не открутить что-нибудь не то.

Часто на сайте производителя на страничке модели вашего ноута будет PDF-инструкция с разделом «How to replace RAM». Можно и на Ютубе поискать видеоинструкцию. Например, для HP 630:

Как опознать по надписям на плате

Но бывают сложные случаи, когда на плате есть только малопонятные надписи и ничего о частотах и пропускной способности.

1. Оперативная память из настольного ПК:

Слева видео логотип производителя — Kingston. Справа — надпись, где есть одна знакомая цифра, похожая на частоту: «KVR1333D3N9/1G». Гуглим «Kingston KVR1333D3N9/1G» и находим плату в Яндекс.Маркете. Оказывается, такая память есть есть во многих магазинах:

Оперативная память на Яндекс.Маркете

Можно сразу заказывать и не заморачиваться с подбором.

2. Безымянная память из ноутбука. На наклейке есть только название производителя G.SKILL и серийный номер:

Гуглим «G.SKILL 11330000000000» и… ничего. Смотрим в каталоге производителя список имеющейся оперативки и обалдеваем: на разной памяти маркировка одинаковая!

«Спасибо» G.SKILL за одинаковые наклейки на всём товаре!

Более того, надписи на чипах памяти тоже совпадают, хотя характеристики у памяти разные.

В таком случае остается одно: идти на страничку модели на сайте производителя ноутбука и смотреть там подсказки. Обычно указывают тип установленной памяти. Если повезет, и частоту напишут. В противном случае просите у техподдержки список совместимой оперативной памяти для вашего ноутбука. По списку можно будет понять, какой частоты память поддерживается. Поверьте: покупать наугад не стоит. Может статься, что ноутбуку нужна память DDR3L, а с обычной DDR3 не работает.

Если оперативной памяти нет

Вам достался компьютер без оперативки? Странный случай.

Если это настольный ПК, ищите материнской плате надписи:

Иногда будет сразу указан тип поддерживаемой оперативной памяти. Иначе придется гуглить: крупный текст — это название модели мат. платы. На страничке материнской платы на сайте производителя вы найдете искомые характеристики.

В случае с ноутбуками ищем в Интернете модель, смотрим характеристики или спрашиваем техподдержку производителя о поддерживаемой оперативной памяти.

Разгон оперативной памяти DDR4 на AMD Ryzen и Intel Core

Статьи • 10 ноября 2021 • Евгений Серов

На github.com кто-то заморочился и сделал полноценный гайд по разгону оперативной памяти DDR4 на Intel и AMD Ryzen. А в качестве базовой информации в дополнении к нашему видео он будет полезен каждому.

Делимся переводом, приятного прочтения.

  • Подготовка
  • Ожидания и ограничения
  • Материнская плата
  • Микросхемы
  • Отчёты Thaiphoon Burner
  • О рангах и объёме
  • Масштабирование напряжения
  • Ожидаемая максимальная частота
  • Биннинг
  • Максимальное рекомендованное повседневное напряжение
  • Ранговость

Встроенный контроллер памяти (IMC)

  • Intel – LGA1151
  • AMD – AM4

Разгон

  • Нахождение максимальной частоты
  • Пробуем повысить частоты
  • Оптимизация таймингов
  • Дополнительные советы

Подготовка

  • Проверьте, что ваши планки находятся в рекомендуемых слотах DIMM (обычно 2 и 4).
  • Перед разгоном памяти убедитесь, что ваш процессор полностью исправен, так как нестабильный процессор может привести к ошибкам памяти. При повышении частоты с жесткими таймингами, ваш процессор может начать работать нестабильно.
  • Убедитесь, что используется актуальная версия UEFI.
  • С помощью утилиты Thaiphoon определите тип микросхем вашей оперативной памяти. От него зависит, на какую частоту и тайминги можно рассчитывать.
  • Протестируйте память с помощью MemTestHelper или аналогичного тестера. Утилита Karhu RAM Test (платная) также неплоха. Я бы не советовал тест памяти AIDA64 и Memtest64, поскольку обе они не очень хорошо умеют находить ошибки памяти.
  • TM5 с экстремальными настройками от anta777, кажется, работает быстрее, чем Karhu RAM Test при поиске ошибок. Один пользователь тщательно тестировал эту утилиту, и ни одна ошибка не ускользнула от него.
  • Обязательно загрузите конфиг. При успешной загрузке должно быть написано «Customize:».
  • Благодарность: u/nucl3arlion
  • Утилиты для просмотра таймингов в Windows:
  • Бенчмарки (тесты производительности):
  • AIDA64 – бесплатная 30-дневная пробная версия. Мы будем использовать тесты кэша и памяти (находятся в разделе Tools), чтобы посмотреть, как работает наша память. Щёлкнув правой кнопкой по кнопке запуска теста, можно выбрать запуск только тестов памяти, пропустив тесты кэша.
  • MaxxMEM2 – бесплатная альтернатива AIDA64, но тесты пропускной способности выглядят намного слабее, поэтому полностью сравнивать с AIDA64 не стоит.
  • Super Pi Mod v1.5 XS – еще одна чувствительная к памяти бенчмарк-утилита, но я не использовал её так часто, как AIDA64. 1-8M значений будет вполне достаточно для быстрого теста. Вам лишь нужно посмотреть на последнее (общее) время, которое чем меньше, тем лучше.
  • HWBOT x265 Benchmark – говорят, эта утилита также хорошо тестирует память, но я сам лично ей не пользовался.

Ожидания и ограничения

В этом разделе рассматриваются 3 компонента, влияющие на процесс разгона: микросхемы (чипы памяти), материнская плата и встроенный контроллер памяти (IMC).

Материнская плата

  • Самые высокие частоты достигаются на материнских платах с 2-мя слотами DIMM.
  • На материнских платах с 4-мя слотами DIMM максимальная частота памяти зависит от количества установленных планок.
    • На материнских платах, работающих с цепочечной (daisy-chain) микроархитектурой RAM, лучше использовать 2 планки памяти. Использование 4-х планок может существенно снизить максимальную частоту памяти.
    • Платы же с Т-образной топологией, напротив, наилучшие показатели при разгоне обеспечат с 4-мя планками. А использование 2-х планок не столь существенно повлияет на максимальную частоту памяти, как использование 4-х на daisy-chain (?).
    • Большинство поставщиков не указывают используемую топологию, но её можно «вычислить» на основе прилагаемого к материнской плате списка совместимых устройств (QVL – Qualified Vendor List). Например, Z390 Aorus Master, вероятно, использует Т-топологию, поскольку наибольшая частота демонстрируется с использованием 4-х модулей DIMM. Если же максимальная частота демонстрируется на 2-х модулях DIMM, то, вероятно, используется топология daisy-chain.
    • По словам известного оверклокера buildzoid’а, разница между Т-образной и цепочечной топологиями проявляет себя только на частотах выше 4ГГц. То есть, если у вас Ryzen 3000, то топология значения не имеет, поскольку 3,8ГГц – как правило, максимум для частоты памяти при соотношении MCLK:FCLK 1:1.

Замечено также, что дешёвые материнские платы могут не разогнаться, возможно по причине низкого качества печатной платы и недостаточного количества слоёв (?).

Страница 2: Тестовые системы

Для наших тестов мы использовали те же компоненты, что и в руководстве по разгону CPU.

» Fotostrecke

Мы использовали три наиболее популярные платформы AMD и Intel. Конечно, они различаются процессорами и материнскими платами, но для всех трёх платформ мы использовали общие компоненты. Мы устанавливали видеокарту Gigabyte Radeon HD 7970 GHz Edition, блок питания Seasonic Platinum Series 660W и накопитель OCZ Vector 150, на который инсталлировались все тесты и операционная система Windows 8.1 со всеми обновлениями. Для охлаждения процессоров мы использовали систему водяного охлаждения с замкнутым контуром Cooler Master Nepton 280L. Все процессоры мы немного разгоняли. Они работали с фиксированной частотой от 4,0 до 4,3 ГГц (в зависимости от модели).

Intel X99

  • Процессор: Intel Core i7-5960X
  • Материнская плата: ASUS Rampage V Extreme
  • Видеокарта: Gigabyte Radeon HD 7970 GHz-Edition
  • Память: Corsair Vengeance LPX DDR4-2800 (4x 4 GB)
  • Кулер: Cooler Master Nepton 280L
  • HDD: OCZ Vector 150, 240 GB
  • Блок питания: Seasonic Platinum Series 660W
  • Операционная система: Windows 8.1

Intel Z97

  • Процессор: Intel Core i7-4790K
  • Материнская плата: ASUS Z97-Deluxe
  • Видеокарта: Gigabyte Radeon HD 7970 GHz-Edition
  • Память: G.Skill Ripjaws X, DDR3-2133 CL11 (2x 4 GB)
  • Кулер: Cooler Master Nepton 280L
  • HDD: OCZ Vector 150, 240 GB
  • Блок питания: Seasonic Platinum Series 660W
  • Операционная система: Windows 8.1

AMD 990FX

  • Процессор: AMD FX-8370e
  • Материнская плата: ASRock 990FX Killer
  • Видеокарта: Gigabyte Radeon HD 7970 GHz-Edition
  • Память: G.Skill Ripjaws X, DDR3-2133 CL11 (2x 4 GB)
  • Кулер: Cooler Master Nepton 280L
  • HDD: OCZ Vector 150, 240 GB
  • Блок питания: Seasonic Platinum Series 660W
  • Операционная система: Windows 8.1

Модули памяти

Модули памяти для тестовой конфигурации X99

С процессорами «Haswell-E» и платформой X99 Intel в конце августа 2014 представила и новый стандарт памяти DDR4 для настольных систем. Для оптимальной производительности на материнскую память следует устанавливать не меньше четырёх планок памяти DDR4. Мы использовали комплект Corsair, который тестировался вместе с процессором Intel Core i7-5960X в нашем обзоре. Из-за высоких тактовых частот комплект Corsair подходит и для разгона памяти.

Планки семейства Vengeance LPX работают от напряжения 1,2 В, теоретически они могут достигать частоты до 2.800 МГц. Модули памяти заявлены с задержками CL 16-18-18-36. Если вы хотите достичь указанных тактовых частот, то CPU Strap процессора «Haswell-E» следует выставить на 125 МГц. Со стандартной частотой 100 МГц встроенный контроллер памяти может работать с максимальной частотой 2.666 МГц. При повышении BCLK следует уменьшать множитель процессора, чтобы не разгонять его. Подробно процесс разгона CPU описан в нашем руководстве.

Модули памяти для тестовой конфигурации Z97 и 990FX.

Две другие платформы опираются на старую добрую память DDR3 в двухканальном режиме, так что для оптимальной производительности требуются две планки. Мы будем использовать недавно представленные планки памяти Ripjaws-X от G.Skill. Они заявлены с частотой 2.133 МГц и задержками CL11-11-11-30. Напряжение составляет от 1,5 до 1,6 В. В тесте разгона планки памяти заработали и на более высоких тактовых частотах, но нам пришлось увеличить напряжение до 1,65 В.

Методика тестирования

Мы тестировали планки памяти на всех трёх платформах, используя разные тесты. Мы провели тесты не только игр, но и архиваторов, утилит для определения пропускной способности памяти и нескольких синтетических бенчмарков. Все тесты мы разделили на две части. На первом этапе мы выставляли задержки на определенном уровне, после чего измеряли производительность. Затем мы увеличивали тактовую частоту памяти при прежних задержках, после чего снова проводили измерения производительности. На втором этапе мы выставили частоту на фиксированном уровне, после чего изменяли задержки памяти.

Это позволило нам выявить преимущества высоких тактовых частот и низких задержек на разных платформах, а также определить прирост производительности.

Для DDR4 мы использовали следующие настройки:

  • DDR4-2400 CL16-16-16-36; 1,2 В
  • DDR4-2133 CL16-16-16-36; 1,2 В
  • DDR4-1866 CL16-16-16-36; 1,2 В
  • DDR4-1600 CL16-16-16-36; 1,2 В
  • DDR4-1333 CL16-16-16-36; 1,2 В
  • DDR4-1866 CL15-15-15-35; 1,2 В
  • DDR4-1866 CL14-15-15-32; 1,2 В

Для DDR3 мы использовали следующие настройки:

  • DDR3-2400 CL11-11-11-30; 1,6 В
  • DDR3-2133 CL11-11-11-30; 1,6 В
  • DDR3-1866 CL11-11-11-30; 1,6 В
  • DDR3-1600 CL11-11-11-30; 1,6 В
  • DDR3-1333 CL11-11-11-30; 1,6 В
  • DDR3-1866 CL10-10-10-28; 1,6 В
  • DDR3-1866 CL9-10-10-28; 1,65 В

<> Разгон памяти: руководство HardwareluxxТесты — SiSoft Sandra
 

Использование тестов

Точного способа разогнать оперативную память ddr3 нет. Это связано с тем, что существует огромное количество планок ОЗУ, каждая может отреагировать по-разному на изменение заводских параметров. Именно поэтому выходом из ситуации становится подбор наиболее подходящих настроек при тестировании каждого изменения. Для этого можно использовать специальные программы, которые существенно упрощают поставленные задачи.

При выборе программ для тестирования работы компьютера рекомендуется уделить внимание следующим:

  1. PC Mark.
  2. Everest.

Выделить лучшую программу с двух вышеприведенных сложно, так как каждая имеет свои достоинства и недостатки. Почему именно эти две программы при огромном выборе? Ответ довольно прост — они не только делают мониторинг основных показателей при нагрузке или простое устройства, но и имеют функцию отслеживания стабильности работы многих моделей ОЗУ. Подобным образом снижают вероятность того, что проведенные изменения приведут к потере стабильности работы оперативной памяти.

Что означают основные тайминги?

Вот основные операции с памятью, которые выполняет компьютер:

  • Активация (Activate) — открывает ряд ячеек для работы. Для того чтобы провести чтение или запись в ячейку, необходимо сначала её активировать. После активации ячейка будет активна до получения команды освобождения.
  • Освобождение (Precharge) — закрывает открытый ряд ячеек или несколько. Ячейки переводятся в состояние ожидания. Данные в них хранятся, но для получения к ним доступа, ячейку надо активировать.
  • Read and Write — чтение или запись данных.
  • Обновление (Refresh) — обновление заряда ячеек, без смены хранимых в них данных.

Все тайминги деляться на три категории: первичные, вторичные и третичные. Самые основные из них — это первичные. Обычно они и указываются на упаковке памяти памяти (например, 16-16-16-32 2T) и их же чаще всего настраивают в BIOS. Вот основные тайминги:

  • CAS Latency (tCL/tCAS) — задержка между отправкой адреса ячейки и началом чтения данных из неё. Это количество циклов работы памяти, которые продут до получения первого бита данных из запрошенной ячейки. В отличие от других параметров, это не максимум, а точное число, которое должно быть синхронизировано для контроллера и памяти. Это самый важный параметр;
  • RAS to CAS Delay (tRCD) — указывает количество циклов между открытием ряда ячеек памяти и моментом, когда можно будет получить к этим ячейкам доступ. Иногда обозначается отдельно для записи и для чтения. Время чтения данных из памяти если ячейки не были активированы ранее будет составлять tCAS + tRCD;
  • Row Precharge Time (tRP) — минимальное количество циклов работы памяти, от закрытия ранее активированного ряда ячеек и открытием следующего. Если изначально был открыт неверный ряд, общее время чтения из памяти будет составлять tRP + tRCD + CL.
  • Row Active Time (tRAS) — минимальное количество циклов работы памяти между активацией ряда ячеек и его закрытием. Это время, необходимое для смены ряда ячеек и оно пересекается с tRCD.
  • Command Rate (CR/CMD/CPC/tCPD) — количество циклов межу активацией чипа памяти и выполнением команды. Для большей стабильности обычно используется значение 2T, однако часто можно встретить значение 1T.

К вторичным таймингам относятся tWR, tRFC, tRDD_L, tRDD_S, tWTR_L, tWTR_S, tRTP, tFAW, и tCWL однако они используются намного реже.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector