Что такое длина префикса сети windows 10
Содержание:
- Маски сети
- Настройка статических адресов IPv4 и IPv6
- Изучение IP-адресов
- Windows 10 поддерживает два типа IP-адресов.
- Вступление
- Сетевые адреса, адреса интерфейсов и широковещательные адреса[править]
- Составление адресного плана.
- Формат заголовка IPv6
- Два шага к автоконфигурации IPv6
- Примеры расчета сетей
- Предварительные условия
- Неправильно
- Что такое префикс сети, и как он помогает расшифровать IP-адрес
- Значение слова префикс
- Маршрутизатор и шлюз подсети.
- Вступление
Маски сети
Маска сети позволяет определить, какая часть адреса является сетью, а какая часть адреса указывает на узел. Сети класса A, B и C имеют маски по умолчанию, также известные как естественные маски:
Class A: 255.0.0.0 Class B: 255.255.0.0 Class C: 255.255.255.0
IP-адрес в сети класса A, которая не была разделена на подсети, будет иметь пару «адрес/маска», аналогичную: 8.20.15.1 255.0.0.0. Чтобы понять, как маска помогает идентифицировать сетевую и узловую части адреса, преобразуйте адрес и маску в двоичный формат.
8.20.15.1 = 00001000.00010100.00001111.00000001 255.0.0.0 = 11111111.00000000.00000000.00000000
Когда адрес и маска представлены в двоичном формате, идентификацию сети и хоста выполнить гораздо проще. Все биты адреса, для которых соответствующие биты маски равны 1, представляют идентификатор сети. Все биты адреса, для которых соответствующие биты маски равны 0, представляют идентификатор узла.
8.20.15.1 = 00001000.00010100.00001111.00000001 255.0.0.0 = 11111111.00000000.00000000.00000000 ----------------------------------- net id | host id netid = 00001000 = 8 hostid = 00010100.00001111.00000001 = 20.15.1
Настройка статических адресов IPv4 и IPv6
Каждый установленный сетевой адаптер может быть подключен к одной локальной сети. Подключения создаются автоматически. Для настройки ІР-адреса конкретного подключения выполните следующие действия:
- Щелкните Пуск (Start) и Сеть (Network). В консоли Сеть (Network) щелкните кнопку Центр управления сетями и общим доступом (Network And Sharing Center) на панели инструментов.
- В окне Центр управления сетями и общим доступом (Network And Sharing Center) щелкните ссылку Управление сетевыми подключениями (Manage Network Connections). В окне Сетевые подключения (Network Connections) щелкните правой кнопкой нужное подключение и выберите команду Свойства (Properties).
- Дважды щелкните протокол, соответствующий типу настраиваемого IP-адреса – TCP/IPv6 или TCP/IPv4.
-
Настройте адрес IPv6:
- Установите переключатель Использовать следующий IPv6-адрес (Use The Following IPv6 Address) и введите IPv6-адрес в поле IPv6-адрес (IPv6 Address). Этот IPv6-адрес должен быть уникален в пределах сети.
- Нажмите на клавишу Tab. Поле Длина префикса сети (Subnet Prefix Length) обеспечивает нормальный доступ компьютера к сети. Система вставляет в поле Длина префикса сети (Subnet Prefix Length) стандартное значение префикса. Если в сети не используются подсети переменной длины, стандартное значение должно сработать. В противном случае вам придется привести значение в соответствии с вашей сетью.
-
Настройте адрес IPv4:
- Установите переключатель Использовать следующий IP-адрес (Use The Following IP Address) и введите IPv4-aдpec в поле IP-адрес (IP Address). Назначаемый компьютеру IPv4-адрес должен быть уникален в пределах сети.
- Нажмите на клавишу Tab. Поле Маска подсети (Subnet Mask) обеспечивает нормальный доступ компьютера к сети. Система сама вставляет в поле значение маски по умолчанию, которое подходит в большинстве ситуаций. При необходимости задайте другое значение, соответствующее вашей сети.
- Если компьютеру необходим выход в другие ТСР/IP-сети, в Интернет или другие подсети, укажите IP-адрес шлюза по умолчанию в поле Основной шлюз (Default Gateway).
- Для разрешения доменных имен требуется DNS. В соответствующие поля введите ІР-адреса основного и альтернативного DNS-серверов.
- Завершив настройку, щелкните ОК и Закрыть (Close). Повторите процесс для других сетевых адаптеров и IP-протоколов, которые требуется настроить.
- При необходимости настройте WINS для IPv4-адресов.
Изучение IP-адресов
IP-адрес — это адрес, который используется для уникальной идентификации устройства в IP-сети. Адрес состоит из 32 двоичных разрядов и с помощью маски подсети может делиться на часть сети и часть главного узла. 32 двоичных разряда разделены на четыре октета (1 октет = 8 битов). Каждый октет преобразуется в десятичное представление и отделяется от других октетов точкой. Поэтому принято говорить, что IP-адрес представлен в десятичном виде с точкой (например, 172.16.81.100). Значение в каждом октете может быть от 0 до 255 в десятичном представлении или от 00000000 до 11111111 в двоичном представлении.
Ниже приведен способ преобразования двоичных октетов в десятичное представление: Самый правый бит (самый младший разряд) октета имеет значение 20.Расположенный слева от него бит имеет значение 21.И так далее — до самого левого бита (самого старшего разряда), который имеет значение 27. Таким образом, если все двоичные биты являются единицами, эквивалентом в десятичном представлении будет число 255, как показано ниже:
Ниже приведен пример преобразования октета, в котором не все биты равны 1.
В этом примере показан IP-адрес, представленный в двоичном и десятичном форматах.
Эти октеты разделены таким образом, чтобы обеспечить схему адресации, которая может использоваться как для больших, так и для малых сетей. Существует пять различных классов сетей: от A до E (используются буквы латинского алфавита). Этот документ посвящен классам от A до C, поскольку классы D и E зарезервированы и их обсуждение выходит за рамки данного документа.
Примечание: Также следует отметить, что термины ««класс A», «класс B» и так далее используются в данном документе для облегчения понимания IP-адресации и организации подсетей.
Класс IP-адреса может быть определен из трех старших разрядов (три самых левых бита первого октета). Для справки показаны адреса классов D и Е.
Рисунок 1
Октеты 2,3 и 4 (следующие 24 бита) предоставлены сетевому администратору, который может разделить их на подсети и узлы. Адреса класса A используются в сетях с количеством узлов, превышающим 65 536 (фактически до 16777214 узлов!)!).
Октеты 3 и 4 (16 битов) предназначены для локальных подсетей и узлов. Адреса класса B используются в сетях с количеством узлов от 256 до 65534.
В адресе класса C первые три октета представляют собой сетевую часть. Октет 4 (8 битов) предназначен для локальных подсетей и узлов. Этот класс идеально подходит для сетей, в которых количество узлов не превышает 254.
Windows 10 поддерживает два типа IP-адресов.
Динамический IP-адрес назначается сервером DHCP. Обычно это ваш маршрутизатор, но это может быть выделенный компьютер с Linux или компьютер под управлением Windows Server.
Статический IP-адрес обычно указывается пользователем вручную. Такая конфигурация традиционно используется в небольших сетях, где DHCP-сервер недоступен и часто не требуется.
В Windows 10 есть несколько способов установить статический IP-адрес. Вы можете использовать классическую панель управления (свойства адаптера), Netsh в командной строке или PowerShell. Начиная со сборки 18334, Windows 10 позволяет устанавливать статический IP-адрес в приложении «Параметры». Посмотрим, как это можно сделать.
Вступление
Каждое устройство, подключённое к интернету, требует цифровой идентификатор. IP-адрес является цифровым кодом, используемым для определения различного оборудования, подключённого к Всемирной паутине. На сегодняшний день существует две версии IP: IPv4 и IPv6. Протокол версии 4 является все ещё основным, но количество доступных ресурсов исчерпалось, поэтому постепенно начинает использоваться 6 версия, позволяющая использовать гораздо большее количество ресурсов. Каждый идентификатор содержит информацию о конкретном соединении, а также о подключённом оборудовании. Префикс указывает, какие значения используются для обозначения сети, а какие — для обозначения устройства. Давайте детальнее рассмотрим, что такое сетевой префикс, и как он поможет расшифровать IP-адрес.
Любое устройство гарантированно получает свой уникальный идентификатор
Сетевые адреса, адреса интерфейсов и широковещательные адреса[править]
IP адрес может означать одно из трех:
- Адрес IP сети (группа IP устройств, имеющих доступ к общей среде передаче — например, все устройства в сегменте Ethernet). Сетевой адрес всегда имеет биты интерфейса (хоста) адресного пространства установленными в 0 (если сеть не разбита на подсети — как мы еще увидим);
- Широковещательный адрес IP сети (адрес для ‘разговора’ со всеми устройствами в IP сети). Широковещательные адреса для сети всегда имеют интерфейсные (хостовые) биты адресного пространства установленными в 1 (если сеть не разбита на подсети — опять же, как мы вскоре увидим).
- Адрес интерфейса (например Ethernet-адаптер или PPP интерфейс хоста, маршрутизатора, сервера печать итд). Эти адреса могут иметь любые значения хостовых битов, исключая все нули или все единицы — чтобы не путать с адресами сетей и широковещательными адресами.
Итого:
- Для сети класса A: (один байт под адрес сети, три байта под номер хоста)
- 10.0.0.0 сеть класса А, потому что все хостовые биты равны 0.
- 10.0.1.0 адрес хоста в этой сети
- 10.255.255.255 широковещательный адрес этой сети, поскольку все сетевые биты установлены в 1
- Для сети класса B: (два байта под адрес сети, два байта под номер хоста)
- 172.17.0.0 сеть класса B
- 172.17.0.1 адрес хоста в этой сети
- 172.17.255.255 сетевой широковещательный адрес
- Для сети класса C: (три байта под адрес сети, один байт под номер хоста)
- 192.168.3.0 адрес сети класса C
- 192.168.3.42 хостовый адрес в этой сеть
- 192.168.3.255 сетевой широковещательный адрес
Почти все доступные сетевые IP-адреса принадлежат классу C.
Составление адресного плана.
Мы помним, что *маска IP-адреса* бывает разной длины. Чем больше длина маски, тем меньше хостов может быть в подсети. Одновременно увеличивается доля «съеденных» адресов на адреса подсети, шлюза по умолчанию и направленного бродкаста.
Пример. Подсеть с маской /29 (232-29 = 8 комбинаций). Здесь остаётся всего пять доступных для реального использования адресов, в процентах это будет 62,5%. Легко поставить себя на место провайдера, которому необходимо выдать тысячам корпоративных клиентов блоки /29. Для него грамотная разбивка IP-пространства на подсети жизненно необходима.
Эту науку ещё называют составлением адресного плана. Каждый, кто разбивает IP-пространство на подсети, должен уметь не только видеть и учитывать множество факторов, но и искать разумные компромиссы.
Если используется большой диапазон адресов, удобно работать с масками, совпадающими по длине с границами октетов.
Пример. Адреса из блоков частного сектора: 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16.
*Маска IP-адреса*: /8, /16, /24 или, соответственно, по-другому 255.0.0.0, 255.255.0.0, 255.255.255.0.
Такой подход серьёзно облегчает работу мозга и снижает нагрузку на калькулятор: не надо постоянно переходить на двоичную систему и биты. Ничего плохого в этом методе нет. Кроме одного: возможности чересчур сильно расслабиться. и наделать ошибок.
Формат заголовка IPv6
Давайте рассмотрим формат заголовка протокола IPv6. Основное изменение это более длинные адреса отправителя и получателя, каждая из которых занимают по 16 байт.
- Первое поле в заголовке протокола IPv6 также, как и в заголовке протокола IPv4, это номер версии 4 для IPv4 и 6 для IPv6.
- Затем идет поле класс трафика, оно необходимо для реализации качества обслуживания. Самый простой вариант, разбиение трафика на два класса, обычный и важный. Маршрутизаторы, которые поддерживают обеспечение качества обслуживания, передают важный трафик быстрее используя специальную выделенную очередь, также возможны и другие варианты использования классов трафиков.
- Следующее поле в заголовке IPv6 это метка потока, это поле используется для того чтобы объединить преимущества сетей коммутации пакетов с сетями с коммутацией каналов. У набора пакетов, которые передаются от одного отправителя к одному получателю, и требует определенного типа обслуживания, устанавливается одна и та же метка. Маршрутизаторы, которые поддерживают работу в таком режиме, обрабатывают пакет на основе метки, что гораздо быстрее.
- Следующее поле это длина полезной нагрузки, в отличии от протокола IPv4, где в подобном поле указывается общая длина пакета, здесь указывается только размер данных без размера заголовка.
- Затем идет поле следующий заголовок, которое необходимо, если используются дополнительные заголовки, в этом поле указывается тип первого дополнительного заголовка.
- В IPv6 поле время жизни пакета переименовали в максимальное число транзитных участков, потому что на практике вместо времени жизни, даже в протоколе IPv4, указывается максимальное количество маршрутизаторов через которое может пройти пакет, перед тем как он будет отброшен.
По сравнению с заголовком протокола IPv4 в протоколе IPv6 нет полей, которые отвечают за фрагментацию, и за контрольную сумму. Расчет контрольной суммы создает большую нагрузку на маршрутизаторы, однако эта операция часто является излишней, так как контрольная сумма рассчитывается на канальном уровне, и на сетевом уровне. Поэтому от расчета контрольных сумм в протоколе IPv6, было решено отказаться.
Также было принято решение отказаться от фрагментации, потому что она так же как и расчет контрольной суммы, создает большую нагрузку на маршрутизаторы. На практике во многих сетях сейчас используется один и тот же размер пакета, соответствующий размеру кадра Ethernet 1500 байт, поэтому фрагментация часто являются ненужной. Если все же где-то по пути пакета встретиться сеть с меньшим максимальным размером пакета, то вместо фрагментации необходимо использовать технологию Path MTU Discovery.
Также как и заголовок протокола IPv4, заголовок протокола IPv6 состоит из двух частей обязательный и необязательной. В необязательные части может быть несколько дополнительных заголовков.
Дополнительные заголовки IPv6
В IPv6 могут быть дополнительные заголовки следующих типов:
- Заголовок параметры маршрутизации — содержит данные, которые необходимы маршрутизаторам для того, чтобы корректно обрабатывать пакеты.
- Заголовок параметры получателя — содержит данные, которые необходимы для обработки пакета на стороне получателя.
- Дополнительный заголовок маршрутизация — содержит список маршрутизаторов, через который пакет должен обязательно пройти.
В протоколе IPv6 фрагментация преимущественно не используется, вместо неё используется технология Path MTU Discovery, но как вариант все-таки маршрутизаторы могут фрагментировать пакеты, для этого используется не обязательная часть заголовка.
Важным добавлением в протокол IPv6 является механизм защиты данных, которых не было в IPv4 это аутентификация и шифрование. Обе технологии не являются частью протокола IPv6, а описаны в отдельных документах. RFC 2402 IP Authentication Header используется для аутентификации, а документ RFC 2406 описывает технологию шифрования IP Encapsulation Security Payload, сейчас активными являются обновленные версии этих документов.
Два шага к автоконфигурации IPv6
Автоконфигурированные Состояния Адресов
Адреса Autoconfigured находятся в одном или нескольких из следующих состояний
- Ориентировочный адрес в процессе проверки на уникальность. Проверка выполняется путем обнаружения дубликатов адресов. Узел не может получать одноадресный трафик на предварительный адрес. Это может, однако, получить и обработать сообщения объявления Многоадресного соседа, отправленные в ответ на сообщение запроса соседа, которое было отправлено во время обнаружения дублирующего адреса.
- Действительный адрес может быть использован для отправки и приема одноадресного трафика. Допустимое состояние включает предпочтительное и устаревшее состояния. Сумма времени, в течение которого адрес остается в предварительном, предпочтительном и устаревшем состояниях, определяется полем допустимое время жизни в опции Префикс Information Сообщения объявления маршрутизатора или поле допустимое время жизни опции адреса DHCPV6 IA (Identity Association).
- Выбранный адрес является действительным, его уникальность была проверена, и он может быть использован для неограниченного общения. Узел может отправлять и получать одноадресный трафик с предпочтительного адреса. Период времени, в течение которого адрес может оставаться в предварительном и предпочтительном состояниях, определяется предпочтительным полем времени жизни в опции информации о Префиксе Сообщения объявления маршрутизатора или предпочтительным полем времени жизни опции адреса IA DHCPv6.
- Устаревший адрес является действительным, и его уникальность была проверена, но ее использование не рекомендуется для новых коммуникаций. Существующие сеансы связи могут по-прежнему использовать устаревший адрес. Узел может отправлять и получать одноадресный трафик на устаревший адрес и с него.
- Неверный адрес не может быть использован для отправки и приема одноадресного трафика. Адрес переходит в недопустимое состояние после истечения срока действия.
Примеры расчета сетей
Деление сети осуществляется присвоением битов из порции адреса хоста к порции адреса сети. Тем самым мы увеличиваем возможное количество подсетей, но уменьшаем количество хостов в подсетях. Чтобы узнать, сколько получается подсетей из присвоенных битов надо воспользоваться cisco формулой расчета сетей: 2n, где n является количеством присвоенных бит.
Пример расчета сети на 2 подсети.
У нас есть адрес сети 192.168.1.0/24, нам надо разделить имеющуюся сеть на 2 подсети. Попробуем забрать от порции хоста 1 бит и воспользоваться формулой: 21=2, это значит, что если мы заберём один бит от части хоста, то мы получим 2 подсети. Присвоение одного бита из порции хоста увеличит префикс на один бит: /25. Теперь надо выписать 2 одинаковых IP адреса сети в двоичном виде изменив только присвоенный бит (у первой подсети присвоенный бит будет равен 0, а у второй подсети = 1). Захваченный бит я выделю более жирным шрифтом красного цвета.
2 подсети (захваченный бит я выделю более жирным шрифтом красного цвета):
1) 11000000.10101000.00000001.0000000
2) 11000000.10101000.00000001.10000000
Теперь запишем рядом с двоичным видом десятичный, и добавим новый префикс. Красным пометил порцию подсети, а синим – порцию хоста.
1) 11000000.10101000.00000001.00000000 = 192.168.1.0/25
2) 11000000.10101000.00000001.10000000 = 192.168.1.128/25
Всё, сеть разделена на 2 подсети. Как мы видим выше, порция хоста теперь составляет 7 бит.
Чтобы высчитать, сколько адресов хостов можно получить используя 7 бит, необходимо воспользоваться cisco формулой расчёта хостов: 2n-2, где n = количество бит в порции хоста.
27 — 2 = 126 хостов. В начале статьи было сказано, что вычитаемая цифра 2 является двумя адресами, которые нельзя присвоить хосту: адрес сети и широковещательный адрес.
Адрес сети, это когда в порции хоста все нули, а широковещательный адрес, это когда в порции хоста все единицы. Выпишем эти адреса для каждой подсети в двоичном и десятичном виде:
11000000.10101000.00000001.00000000 = 192.168.1.0/25 (адрес сети первой подсети)
11000000.10101000.00000001.01111111 = 192.168.1.127/25 (широковещательный адрес первой подсети)
11000000.10101000.00000001.10000000 = 192.168.1.128/25 (адрес сети второй подсети)
11000000.10101000.00000001.11111111 = 192.168.1.255/25 (широковещательный адрес второй подсети)
Пример расчета сети на 4 подсети.
Этот пример делается абсолютно по тому же алгоритму, что и предыдущий, поэтому я запишу текст немного короче. Адрес я буду использовать тот же, чтобы вы видели отличия. Если нужны подробности, пишите на почту eaneav@gmail.com.
У нас есть адрес сети 192.168.1.0/24, надо разделить сеть на 4 подсети. Высчитываем по формуле, сколько нам надо занять бит от хоста: 22 = 4. Префикс изменяется на /26.
4 подсети (захваченный бит я выделю более жирным шрифтом красного цвета):
1) 11000000.10101000.00000001.00000000
2) 11000000.10101000.00000001.01000000
3) 11000000.10101000.00000001.10000000
4) 11000000.10101000.00000001.11000000
Красным пометил порцию подсети, а синим – порцию хоста:
1) 11000000.10101000.00000001.00000000 = 192.168.1.0/26
2) 11000000.10101000.00000001.01000000 = 192.168.1.64/26
3) 11000000.10101000.00000001.10000000 = 192.168.1.128/26
4) 11000000.10101000.00000001.11000000 = 192.168.1.192/26
Всё, сеть разделена на 4 подсети. Порция хоста теперь составляет 6 бит.
26 — 2 = 62 хостов.
11000000.10101000.00000001.00000000 = 192.168.1.0/26 (адрес сети первой подсети)
11000000.10101000.00000001.00111111 = 192.168.1.63/26 (широковещательный адрес первой подсети)
11000000.10101000.00000001.01000000 = 192.168.1.64/26 (адрес сети второй подсети)
11000000.10101000.00000001.01111111 = 192.168.1.127/26 (широковещательный адрес второй подсети)
11000000.10101000.00000001.10000000 = 192.168.1.128/26 (адрес сети третьей подсети)
11000000.10101000.00000001.10111111 = 192.168.1.191/26 (широковещательный адрес третьей подсети)
11000000.10101000.00000001.11000000 = 192.168.1.192/26 (адрес сети четвёртой подсети)
11000000.10101000.00000001.11111111 = 192.168.1.255/26 (широковещательный адрес четвёртой подсети)
Предварительные условия
Используемые компоненты
Настоящий документ не имеет жесткой привязки к каким-либо конкретным версиям программного обеспечения и оборудования.
Сведения, представленные в этом документе, были получены от устройств, работающих в специальной лабораторной среде. Все устройства, описанные в этом документе, были запущены с чистой (стандартной) конфигурацией. В рабочей сети необходимо изучить потенциальное воздействие всех команд до их использования.
Дополнительные сведения
Если определения помогают вам, воспользуйтесь следующими терминами словаря, чтобы начать работу:
-
Адрес — Уникальный ID-номер, назначенный одному узлу или интерфейсу в сети.
-
Подсеть — это часть сети, в которой совместно используется определенный адрес подсети.
-
Маска подсети — 32-битная комбинация, используемая для того, чтобы описать, какая часть адреса относится к подсети, а какая к узлу.
-
Интерфейс — сетевое подключение.
Если уже имеются адреса в Интернете, официально полученные из центра сетевой информации InterNIC, то можно приступать к работе. Если подключение к Интернету не планируется, настоятельно рекомендуется использовать зарезервированные адреса, как описано в документе RFC 1918.
Неправильно
Когда на сайте пишут (499) 123-45-67 или (499) 1234567, то iOS предложит вам набрать номер 4991234567. По такому нельзя никуда дозвониться. Мода на убирание префиксов пришла из печатной продукции. Но там это вынужденный шаг, сам с этим сталкивался, когда верстаешь рекламный разворот крупной торговой сети с указанием всех телефонов магазинов, а контактный врез ограничен по площади. Первым делом мы резали +7 и 8, оставляя только код + номер.
Вебмастера это переняли. Однако, когда в 2009 году айфон стал различать телефонные номера на сайтах, то отсутствие префикса вело к неправильному набору.
Телефон дан картинкой
В стиле 2000-х. У некоторых веб-мастеров не хватает знаний в CSS, чтобы координаты контактной формы смотрелись во всех браузерах одинаково, поэтому контакты делают в виде картинки и заверстывают в общий макет. Вот только Safari не умеет распознавать подобные изыски. Клиент на входе в магазин получает подножку.
Код и телефон написаны разными стилями
Противоположный случай – когда верстальщик отлично владеет CSS и хочет сделать акцент на номере, оставив при этом префикс с кодом. Смотрится красиво, но айфон не поймет мотивов веб-мастера. Избегайте таких случаев.
Так же код часто пишут одним цветом, а номер другим. Тоже в топку, если хотите дружить с потенциальными клиентами, ищущих в интернете информацию о фирме прямо с телефона.
Повторимся еще раз. ПРЕФИКС + КОД + ТЕЛЕФОН должны быть набраны вместе в едином стиле:
+7 812 987-6543+7 (495) 12345678 8790 23-23-09
Мобильный Safari умеет различать на сайтах телефоны в окружении другого текста. Это удобно, потому что тапаешь по номеру на веб-странице – и сразу открывается окошко с предложением сделать исходящий вызов абоненту. Однако многие веб-мастера усложняют жизнь потенциальным клиентам. Давайте внесем ясность, как делать правильно. Как надо Запомните правило. Если вы верстаете контактную форму, то префикс +7/8,
Что такое префикс сети, и как он помогает расшифровать IP-адрес
Каждое устройство, подключённое к интернету, требует цифровой идентификатор. IP-адрес является цифровым кодом, используемым для определения различного оборудования, подключённого к Всемирной паутине. На сегодняшний день существует две версии IP: IPv4 и IPv6.
Протокол версии 4 является все ещё основным, но количество доступных ресурсов исчерпалось, поэтому постепенно начинает использоваться 6 версия, позволяющая использовать гораздо большее количество ресурсов. Каждый идентификатор содержит информацию о конкретном соединении, а также о подключённом оборудовании.
Префикс указывает, какие значения используются для обозначения сети, а какие — для обозначения устройства.
Значение слова префикс
Каждый мобильный и стационарный телефон имеет номер, который состоит из кода страны с кодом оператора и кодом самого номера. Код оператора называется префикс. К примеру, телефонный номер +7 908 111 11 11 содержит префикс 908. У каждого оператора существует свой префикс. Это дает идентифицировать оператора и номер телефона любому абоненту, которому поступает вызов.
Однако, префиксов существует очень много и запомнить их сложно. Чтобы решить проблему поиска нужного оператора, есть специальные программы, занимающиеся идентификацией номера через сеть интернет. Поэтому, когда появляется необходимость узнать префикс, к примеру, чтобы узнать номер мошенников, то можно воспользоваться такой системой.
Маршрутизатор и шлюз подсети.
Наверное, лучше повторить: шлюз и маршрутизатор — это одно и то же!
Из того, о чём говорилось только что, следует достаточно ясный вывод. Маршрутизатор с адресом интерфейса 192.168.8.1 ничего не знает о трафике, передаваемом, например, между хостами 192.168.8.5 и 192.168.8.7.
У начинающих администраторов одна из самых типичных ошибок — желание заблокировать или как-то иначе проконтролировать с помощью шлюза трафик между хостами в одной подсети. На самом деле, чтобы трафик проходил через маршрутизатор, адресат и отправитель должны находиться в разных подсетях.
А отсюда следует, что в сети даже самого маленького предприятия должно быть несколько IP-подсетей (больше двух) и маршрутизатор (точнее, файрвол, но сейчас можно считать эти слова синонимами), который маршрутизирует и контролирует трафик между подсетями.
Важный следующий шаг: разбиение подсетей на более мелкие подсети.
Сеть из нашего примера 192.168.8.0/21 можно разбить на две подсети /22, четыре подсети /23, восемь /24 и так далее. Общее правило, как можно догадаться, такое:
при этом K — количество подсетей с длиной маски Y, которые умещаются в подсеть с длиной маски X.
Любой приличный айтишник, включая сетевого администратора, должен знать наизусть степени двойки от нуля до 16. Просто для того, чтобы не стыдно было получать зарплату.
Есть такой процесс, называемый агрегацией. Это значит объединение мелких префиксов — с длинной маской подсети, в которых мало хостов — в крупные, с короткой маской подсети, в которых много хостов. Второе название этого же процесса — суммаризация. Запомните, не суммирование!
Агрегация необходима, чтобы минимизировать количество информации, которую использует маршрутизатор для поиска пути передачи в сети.
Пример: провайдеры выдают клиентам множество маленьких блоков по типу /29. При этом весь остальной Интернет об этом даже не подозревает. За каждым провайдером закреплены префиксы намного крупнее — от /19 и выше. Благодаря такой системе в Глобальную таблицу Интернет-маршрутизации заносится намного меньше записей: их число сократилось на несколько порядков.
Вступление
Каждое устройство, подключённое к интернету, требует цифровой идентификатор. IP-адрес является цифровым кодом, используемым для определения различного оборудования, подключённого к Всемирной паутине. На сегодняшний день существует две версии IP: IPv4 и IPv6. Протокол версии 4 является все ещё основным, но количество доступных ресурсов исчерпалось, поэтому постепенно начинает использоваться 6 версия, позволяющая использовать гораздо большее количество ресурсов. Каждый идентификатор содержит информацию о конкретном соединении, а также о подключённом оборудовании. Префикс указывает, какие значения используются для обозначения сети, а какие — для обозначения устройства. Давайте детальнее рассмотрим, что такое сетевой префикс, и как он поможет расшифровать IP-адрес.
Любое устройство гарантированно получает свой уникальный идентификатор