Math.random()

Модуль random

Для того, чтобы полноценно использовать эту опцию в своей работе, необходимо ознакомится с главными ее составляющими. Они выступают некими методами, позволяющими выполнять определенные действия. Основная стандартная библиотека Рython состоит из таких компонентов со следующими параметрами:

  • random () – может вернуть число в промежуток значений от 0 до 1;
  • seed (a) – производит настройку генератора на новую последовательность а;
  • randint (a,b) – возвращает значение в диапазон данных от а до b;
  • randrange (a, b, c) – выполняет те же функции, что и предыдущая, только с шагом с;
  • uniform (a, b) – производит возврат вещественного числа в диапазон от а до b;
  • shuffle (a) – миксует значения, находящиеся в перечне а;
  • choice (a) – восстанавливает обратно случайный элемент из перечня а;
  • sample (a, b) – возвращает на исходную позицию последовательность длиной b из перечня а;
  • getstate () – обновляет внутреннее состояние генератора;
  • setstate (a) – производит восстановление внутреннего состояния генератора а;
  • getrandbits (a) – восстанавливает а при выполнении случайного генерирования бит;
  • triangular (a, b, c) – показывает изначальное значение числа от а до b с шагом с.

Если вам необходимо применить для задания инициализирующееся число псевдо случайной последовательности, то не обойтись без функции seed. После ее вызова без применения параметра, используется значение системного таймера. Эта опция доступна в конструкторе класса Random.

Более показательными будут примеры на основе вышеописанного материала. Для возможности воспользоваться генерацией случайных чисел в Рython 3, сперва вам потребуется выполнить импорт библиотеки random, внеся сперва ее в начало исполняемого файла при помощи ключевого слова import.

Вещественные числа

Модуль оснащен одноименной функцией random. Она более активно используется в Питоне, чем остальные. Эта функция позволяет произвести возврат числа в промежуток значений от 0 до 1. Вот пример трех основных переменных:

import randoma = random.random()b = random.random()print(a)print(b)

0.5479332865190.456436031781

Целые числа

Чтобы в программе появились случайные числа из четко заданного диапазона, применяется функция randit. Она обладает двумя аргументами: максимальным и минимальным значением. Она отображает значения, указанные ниже в генерации трех разных чисел от 0 до 9.

import randoma = random.randint(0, 9)b = random.randint(0, 9)print(a)print(b)

47

Диапазон целых чисел

Использование в такой ситуации метода randage поможет сгенерировать целочисленные значения, благодаря сотрудничеству с тремя основными параметрами:

  • минимальное значение;
  • максимальное;
  • длина шага.

При вызове функции с одним требованием, граница будет установлена на значении 0, а промежуток будет установлен на 1. Для двух аргументов длина шага уже высчитывается автоматически. Вот пример работы этой опции на основе трех разных наборов.

import randoma = random.randrange(10)b = random.randrange(2, 10)c = random.randrange(2, 10, 2)print(a)print(b)print(c)

952

Диапазон вещественных чисел

Генерация вещественных чисел происходит при использовании функции под названием uniform. Она регулируется всего двумя параметрами: минимальным и максимальным значением. Пример создания демонстрации с переменными a, b и c.

import randoma = random.uniform(0, 10)b = random.uniform(0, 10)print(a)print(b)

4.856873750913.66695202551

How can this be useful ?

Sometimes, the test fixture does not really matter to the test logic. For example, if we want to test the result of a new sorting algorithm, we can generate random input data and assert the output is sorted, regardless of the data itself:

@org.junit.Test
public void testSortAlgorithm() {

   // Given
   int[] ints = easyRandom.nextObject(int[].class);

   // When
   int[] sortedInts = myAwesomeSortAlgo.sort(ints);

   // Then
   assertThat(sortedInts).isSorted(); // fake assertion

}

Another example is testing the persistence of a domain object, we can generate a random domain object, persist it and assert the database contains the same values:

@org.junit.Test
public void testPersistPerson() throws Exception {
   // Given
   Person person = easyRandom.nextObject(Person.class);

   // When
   personDao.persist(person);

   // Then
   assertThat("person_table").column("name").value().isEqualTo(person.getName()); // assretj db
}

There are many other uses cases where Easy Random can be useful, you can find a non exhaustive list in the wiki.

Округление

Одна из часто используемых операций при работе с числами – это округление.

В JavaScript есть несколько встроенных функций для работы с округлением:

Округление в меньшую сторону: становится , а — .
Округление в большую сторону: становится , а — .
Округление до ближайшего целого: становится , — , а — .
(не поддерживается в Internet Explorer)
Производит удаление дробной части без округления: становится , а — .

Ниже представлена таблица с различиями между функциями округления:

Эти функции охватывают все возможные способы обработки десятичной части. Что если нам надо округлить число до количества цифр в дробной части?

Например, у нас есть и мы хотим округлить число до 2-х знаков после запятой, оставить только .

Есть два пути решения:

Умножить и разделить.
Например, чтобы округлить число до второго знака после запятой, мы можем умножить число на , вызвать функцию округления и разделить обратно.

Метод toFixed(n) округляет число до знаков после запятой и возвращает строковое представление результата.

Округляет значение до ближайшего числа, как в большую, так и в меньшую сторону, аналогично методу :

Обратите внимание, что результатом является строка. Если десятичная часть короче, чем необходима, будут добавлены нули в конец строки:

Мы можем преобразовать полученное значение в число, используя унарный оператор или , пример с унарным оператором: .

Зачем нужны функции getstate() и setstate() ?

Если вы получили предыдущее состояние и восстановили его, тогда вы сможете оперировать одними и теми же случайными данными раз за разом. Помните, что использовать другую функцию random в данном случае нельзя. Также нельзя изменить значения заданных параметров. Сделав это, вы измените значение состояния .

Для закрепления понимания принципов работы и в генераторе случайных данных Python рассмотрим следующий пример:

Python

import random

number_list =

print(«Первая выборка «, random.sample(number_list,k=5))

# хранит текущее состояние в объекте state
state = random.getstate()

print(«Вторая выборка «, random.sample(number_list,k=5))

# Восстанавливает состояние state, используя setstate
random.setstate(state)

#Теперь будет выведен тот же список второй выборки
print(«Третья выборка «, random.sample(number_list,k=5))

# Восстанавливает текущее состояние state
random.setstate(state)

# Вновь будет выведен тот же список второй выборки
print(«Четвертая выборка «, random.sample(number_list,k=5))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

importrandom

number_list=3,6,9,12,15,18,21,24,27,30

print(«Первая выборка «,random.sample(number_list,k=5))

 
# хранит текущее состояние в объекте state

state=random.getstate()

print(«Вторая выборка «,random.sample(number_list,k=5))

 
# Восстанавливает состояние state, используя setstate

random.setstate(state)

 
#Теперь будет выведен тот же список второй выборки

print(«Третья выборка «,random.sample(number_list,k=5))

 
# Восстанавливает текущее состояние state

random.setstate(state)

 
# Вновь будет выведен тот же список второй выборки

print(«Четвертая выборка «,random.sample(number_list,k=5))

Вывод:

Shell

Первая выборка
Вторая выборка
Третья выборка
Четвертая выборка

1
2
3
4

Перваявыборка18,15,30,9,6

Втораявыборка27,15,12,9,6

Третьявыборка27,15,12,9,6

Четвертаявыборка27,15,12,9,6

Как можно заметить в результате вывода — мы получили одинаковые наборы данных. Это произошло из-за сброса генератора случайных данных.

Why is this needed?

Despite being capable of producing numbers within [0, 1), there are a few downsides to doing so:

  • It is inconsistent between engines as to how many bits of randomness:
    • Internet Explorer: 53 bits
    • Mozilla Firefox: 53 bits
    • Google Chrome/node.js: 32 bits
    • Apple Safari: 32 bits
  • It is non-deterministic, which means you can’t replay results consistently
  • In older browsers, there can be manipulation through cross-frame random polling. This is mostly fixed in newer browsers and is required to be fixed in ECMAScript 6.

Also, and most crucially, most developers tend to use improper and biased logic as to generating integers within a uniform distribution.

API

  • : Utilizes
  • : Utilizes
  • : Utilizes
  • : Produces a new Mersenne Twister. Must be seeded before use.

Or you can make your own!

interfaceEngine{next()number;}

Any object that fulfills that interface is an .

  • : Seed the twister with an initial 32-bit integer.
  • : Seed the twister with an array of 32-bit integers.
  • : Seed the twister with automatic information. This uses the current Date and other entropy sources.
  • : Produce a 32-bit signed integer.
  • : Discard random values. More efficient than running repeatedly.
  • : Return the number of times the engine has been used plus the number of discarded values.

One can seed a Mersenne Twister with the same value () or values () and discard the number of uses () to achieve the exact same state.

If you wish to know the initial seed of , it is recommended to use the function to create the seed manually (this is what does under-the-hood).

constseed=createEntropy();constmt=MersenneTwister19937.seedWithArray(seed);useTwisterALot(mt);constclone=MersenneTwister19937.seedWithArray(seed).discard(mt.getUseCount());

Random.js also provides a set of methods for producing useful data from an engine.

  • : Produce an integer within the inclusive range . can be at its minimum -9007199254740992 (-2 ** 53). can be at its maximum 9007199254740992 (2 ** 53).
  • : Produce a floating point number within the range . Uses 53 bits of randomness.
  • : Produce a boolean with a 50% chance of it being .
  • : Produce a boolean with the specified chance causing it to be .
  • : Produce a boolean with / chance of it being true.
  • : Return a random value within the provided within the sliced bounds of and .
  • : Same as .
  • : Shuffle the provided (in-place). Similar to .
  • : From the array, produce an array with elements that are randomly chosen without repeats.
  • : Same as
  • : Produce an array of length with as many rolls.
  • : Produce a random string using numbers, uppercase and lowercase letters, , and of length .
  • : Produce a random string using the provided string as the possible characters to choose from of length .
  • or : Produce a random string comprised of numbers or the characters of length .
  • : Produce a random string comprised of numbers or the characters of length .
  • : Produce a random within the inclusive range of . and must both be s.

An example of using would be as such:

constengine=MersenneTwister19937.autoSeed();constdistribution=integer(,99);functiongenerateNaturalLessThan100(){returndistribution(engine);}

Producing a distribution should be considered a cheap operation, but producing a new Mersenne Twister can be expensive.

An example of producing a random SHA1 hash:

var engine = nativeMath;var distribution =hex(false);functiongenerateSHA1(){returndistribution(engine,40);}

Extending

You can add your own methods to instances, as such:

var random = new Random();
random.bark = function() {
  if (this.bool()) {
    return "arf!";
  } else {
    return "woof!";
  }
};
random.bark(); //=> "arf!" or "woof!"

This is the recommended approach, especially if you only use one instance of .

Or you could even make your own subclass of Random:

function MyRandom(engine) {
  return Random.call(this, engine);
}
MyRandom.prototype = Object.create(Random.prototype);
MyRandom.prototype.constructor = MyRandom;
MyRandom.prototype.mood = function() {
  switch (this.integer(, 2)) {
    case :
      return "Happy";
    case 1:
      return "Content";
    case 2:
      return "Sad";
  }
};
var random = new MyRandom();
random.mood(); //=> "Happy", "Content", or "Sad"

Or, if you have a build tool are are in an ES6+ environment:

class MyRandom extends Random {
  mood() {
    switch (this.integer(, 2)) {
      case :
        return "Happy";
      case 1:
        return "Content";
      case 2:
        return "Sad";
    }
  }
}
const random = new MyRandom();
random.mood(); //=> "Happy", "Content", or "Sad"

Неточные вычисления

Внутри JavaScript число представлено в виде 64-битного формата IEEE-754. Для хранения числа используется 64 бита: 52 из них используется для хранения цифр, 11 из них для хранения положения десятичной точки (если число целое, то хранится 0), и один бит отведён на хранение знака.

Если число слишком большое, оно переполнит 64-битное хранилище, JavaScript вернёт бесконечность:

Наиболее часто встречающаяся ошибка при работе с числами в JavaScript – это потеря точности.

Посмотрите на это (неверное!) сравнение:

Да-да, сумма и не равна .

Странно! Что тогда, если не ?

Но почему это происходит?

Число хранится в памяти в бинарной форме, как последовательность бит – единиц и нулей. Но дроби, такие как , , которые выглядят довольно просто в десятичной системе счисления, на самом деле являются бесконечной дробью в двоичной форме.

Другими словами, что такое ? Это единица делённая на десять — , одна десятая. В десятичной системе счисления такие числа легко представимы, по сравнению с одной третьей: , которая становится бесконечной дробью .

Деление на гарантированно хорошо работает в десятичной системе, но деление на – нет. По той же причине и в двоичной системе счисления, деление на обязательно сработает, а становится бесконечной дробью.

В JavaScript нет возможности для хранения точных значений 0.1 или 0.2, используя двоичную систему, точно также, как нет возможности хранить одну третью в десятичной системе счисления.

Числовой формат IEEE-754 решает эту проблему путём округления до ближайшего возможного числа. Правила округления обычно не позволяют нам увидеть эту «крошечную потерю точности», но она существует.

Пример:

И когда мы суммируем 2 числа, их «неточности» тоже суммируются.

Вот почему – это не совсем .

Не только в JavaScript

Справедливости ради заметим, что ошибка в точности вычислений для чисел с плавающей точкой сохраняется в любом другом языке, где используется формат IEEE 754, включая PHP, Java, C, Perl, Ruby.

Можно ли обойти проблему? Конечно, наиболее надёжный способ — это округлить результат используя метод toFixed(n):

Также можно временно умножить число на 100 (или на большее), чтобы привести его к целому, выполнить математические действия, а после разделить обратно. Суммируя целые числа, мы уменьшаем погрешность, но она все равно появляется при финальном делении:

Таким образом, метод умножения/деления уменьшает погрешность, но полностью её не решает.

Забавный пример

Попробуйте выполнить его:

Причина та же – потеря точности. Из 64 бит, отведённых на число, сами цифры числа занимают до 52 бит, остальные 11 бит хранят позицию десятичной точки и один бит – знак. Так что если 52 бит не хватает на цифры, то при записи пропадут младшие разряды.

Интерпретатор не выдаст ошибку, но в результате получится «не совсем то число», что мы и видим в примере выше. Как говорится: «как смог, так записал».

Два нуля

Другим забавным следствием внутреннего представления чисел является наличие двух нулей: и .

Все потому, что знак представлен отдельным битом, так что, любое число может быть положительным и отрицательным, включая нуль.

В большинстве случаев это поведение незаметно, так как операторы в JavaScript воспринимают их одинаковыми.

Random Number Generation Features in Java 8

Java 8 introduced a new method, ints(), in the java.util.Random class. The ints() method returns an unlimited stream of pseudorandom int values. You can limit the random numbers between a specified range by providing the minimum and the maximum values.

The code to use the Random.ints() method to generate random integer values within a specified range is this.

The getRandomNumberInts() method generates a stream of random integers between the min (inclusive) and max (exclusive). As ints() method produces an IntStream, the code calls the findFirst() method that returns an OptionalInt object that describes the first element of this stream. The code then calls the getAsInt()method to return the int value in OptionalInt.

The code to use the Random.ints() method to generate a stream of specified random integer values is:

The code to call the preceding method is:

The output of the preceding code is:

The code to use the Random.ints() method to generate a stream of a specified number of random integer values between a range is:

The code to call the preceding method is:

The output of the preceding code is:

In addition to ints(), some other frequently used methods that Java 8 introduced to the Random class — which can return a sequential stream of random numbers — are:

  • LongStream longs()
  • DoubleStream doubles()

Usage

In your project, run the following command:

npm install random-js

or

yarn add random-js

In your code:

import{Random}from"random-js";constrandom=newRandom();constvalue=random.integer(1,100);
const{Random}=require("random-js");constrandom=newRandom();constvalue=random.integer(1,100);

Or to have more control:

constRandom=require("random-js").Random;constrandom=newRandom(MersenneTwister19937.autoSeed());constvalue=random.integer(1,100);

It is recommended to create one shared engine and/or instance per-process rather than one per file.

Download and place it in your project, then use one of the following patterns:

define(function(require){var Random =require("random");returnnewRandom.Random(Random.MersenneTwister19937.autoSeed());});define(function(require){var Random =require("random");returnnewRandom.Random();});define("random",function(Random){returnnewRandom.Random(Random.MersenneTwister19937.autoSeed());});

Download and place it in your project, then add it as a tag as such:

<scriptsrc="lib/random-js.min.js"><script><script>var random =newRandom.Random();alert("Random value from 1 to 100: "+random.integer(1,100));</script>

Генерация случайных чисел с помощью класса Math

Чтобы сгенерировать случайное число Java предоставляет класс Math, доступный в пакете java.util. Этот класс содержит статичный метод Math.random(), предназначенный для генерации случайных чисел типа double .

Метод random( ) возвращает положительное число большее или равное 0,0 и меньшее 1,0. При вызове данного метода создается объект генератора псевдослучайных чисел java.util.Random.

Math.random() можно использовать с параметрами и без. В параметрах задается диапазон чисел, в пределах которого будут генерироваться случайные значения.

Пример использования Math.random():

public static double getRandomNumber(){
    double x = Math.random();
    return x;
}

Метод getRandomNumber( ) использует Math.random() для возврата положительного числа, которое больше или равно 0,0 или меньше 1,0 .

Результат выполнения кода:

Double between 0.0 and 1.0: SimpleRandomNumber = 0.21753313144345698

Случайные числа в заданном диапазоне

Для генерации случайных чисел в заданном диапазоне необходимо указать диапазон. Синтаксис:

(Math.random() * ((max - min) + 1)) + min

Разобьем это выражение на части:

  1. Сначала умножаем диапазон значений на результат, который генерирует метод random().Math.random() * (max — min)возвращает значение в диапазоне , где max не входит в заданные рамки. Например, выражение Math.random()*5 вернет значение в диапазоне , в который 5 не входит.
  2. Расширяем охват до нужного диапазона. Это делается с помощью минимального значения.
(Math.random() * ( max - min )) + min

Но выражение по-прежнему не охватывает максимальное значение.

Чтобы получить максимальное значение, прибавьте 1 к параметру диапазона (max — min). Это вернет случайное число в указанном диапазоне.

double x = (Math.random()*((max-min)+1))+min;

Существуют различные способы реализации приведенного выше выражения. Рассмотрим некоторые из них.

Случайное двойное число в заданном диапазоне

По умолчанию метод Math.random() при каждом вызове возвращает случайное число типа double . Например:

public static double getRandomDoubleBetweenRange(double min, double max){
    double x = (Math.random()*((max-min)+1))+min;
    return x;
}

Вы можете вызвать предыдущий метод из метода main, передав аргументы, подобные этому.

System.out.println("Double between 5.0 and 10.00: RandomDoubleNumber = 
"+getRandomDoubleBetweenRange(5.0, 10.00));

Результат.

System.out.println("Double between 5.0 and 10.00: RandomDoubleNumber = 
"+getRandomDoubleBetweenRange(5.0, 10.00));

Случайное целое число в заданном диапазоне

Пример генерации случайного целочисленного значения в указанном диапазоне:

public static double getRandomIntegerBetweenRange(double min, double max){
    double x = (int)(Math.random()*((max-min)+1))+min;
    return x;
}

Метод getRandomIntegerBetweenRange() создает случайное целое число в указанном диапазоне. Так как Math.random() генерирует случайные числа с плавающей запятой, то нужно привести полученное значение к типу int. Этот метод можно вызвать из метода main, передав ему аргументы следующим образом:

System.out.println("Integer between 2 and 6: RandomIntegerNumber 
= "+getRandomIntegerBetweenRange(2,6));

Результат.

Integer between 2 and 6: RandomIntegerNumber = 5

Примечание. В аргументах также можно передать диапазон отрицательных значений, чтобы сгенерировать случайное отрицательное число в этом диапазоне.

Usage

ES6

Each method has signature, where is optional.

import {
  generateIntegers,
  generateDecimalFractions,
  generateGaussians,
  generateStrings,
  generateUUIDs,
  generateBlobs,
  getUsage,
  generateSignedIntegers,
  generateSignedDecimalFractions,
  generateSignedGaussians,
  generateSignedStrings,
  generateSignedUUIDs,
  generateSignedBlobs,
  verifySignature,

  // special
  request,
  RandomOrg
} from 'randomorg-js'

CommonJS / Node.JS

Notice that Node > 4 is required for feature.

const {
  generateIntegers,
  generateDecimalFractions,
  generateGaussians,
  generateStrings,
  // ...
  generateSignedBlobs,
  verifySignature,

  // special
  request,
  RandomOrg
} = require('randomorg-js')

So you simply can just use old way

var randomorg = require('randomorg-js')

console.log(randomorg)
console.log(randomorg.generateIntegers)
console.log(randomorg.generateDecimalFractions)
console.log(randomorg.verifySignature)
console.log(randomorg.request)
console.log(randomorg.RandomOrg)
// and etc.

Example

const params = {
  apiKey: 'your api key',
  n: 6,
  min: 1,
  max: 6
}

generateIntegers(params, (err, response) => {
  // there may have `err` or `response.error`
  console.log(err || response.error)

  // response is exactly what the API spec
  // defines as response object
  console.log(response)
  console.log(response.id)
  console.log(response.result)
})

Or using the method

request('generateSignedStrings', {
  n: 8,
  length: 10,
  characters: 'ab!~cdefg+_-hijk@lmn#$%opqr^stuvwxyz',
}, (err, response) => {
  console.log(err, response)
})

By default the package exports all methods with randomly generated . To change that, the onoe way can be to add as first argument to each method e.g. ; or the second variant is to call the which returns the same methods and they will use the defined from the constructor.

const { RandomOrg } = require('randomorg-js')

const random = RandomOrg(123555)

random.generateSignedBlobs({
 apiKey: 'your api key here',
 and: 'other params for that method'
}, (er, { id, result }) => {
  // response always has the same ID what
  // user has provided
  console.log(id) // => 123555
  console.log(result) // => random Signed Blobs
})

// but you still can provide
// different `id` to same method
random.generateSignedBlobs(4444, params, (e, { id }) => {
  console.log(id) // => 4444
})

// or to some other method
random.generateIntegers(2938742, params, (e, { id }) => {
  console.log(id) // => 2938742
})

Random Date

Up until now, we generated random temporals containing both date and time components. Similarly, we can use the concept of epoch days to generate random temporals with just date components.

An epoch day is equal to the number of days since the 1 January 1970. So in order to generate a random date, we just have to generate a random number and use that number as the epoch day.

3.1. Bounded

We need a temporal abstraction containing only date components, so java.time.LocalDate seems a good candidate:

Here we’re using the  method to convert each LocalDate to its corresponding epoch day. Similarly, we can verify that this approach is correct:

3.2. Unbounded

In order to generate random dates regardless of any range, we can simply generate a random epoch day:

Our random date generator chooses a random day from 100 years before and after the epoch. Again, the rationale behind this is to generate reasonable date values:

Игра в кости с использованием модуля random в Python

Далее представлен код простой игры в кости, которая поможет понять принцип работы функций модуля random. В игре два участника и два кубика.

  • Участники по очереди бросают кубики, предварительно встряхнув их;
  • Алгоритм высчитывает сумму значений кубиков каждого участника и добавляет полученный результат на доску с результатами;
  • Участник, у которого в результате большее количество очков, выигрывает.

Код программы для игры в кости Python:

Python

import random

PlayerOne = «Анна»
PlayerTwo = «Алекс»

AnnaScore = 0
AlexScore = 0

# У каждого кубика шесть возможных значений
diceOne =
diceTwo =

def playDiceGame():
«»»Оба участника, Анна и Алекс, бросают кубик, используя метод shuffle»»»

for i in range(5):
#оба кубика встряхиваются 5 раз
random.shuffle(diceOne)
random.shuffle(diceTwo)
firstNumber = random.choice(diceOne) # использование метода choice для выбора случайного значения
SecondNumber = random.choice(diceTwo)
return firstNumber + SecondNumber

print(«Игра в кости использует модуль random\n»)

#Давайте сыграем в кости три раза
for i in range(3):
# определим, кто будет бросать кости первым
AlexTossNumber = random.randint(1, 100) # генерация случайного числа от 1 до 100, включая 100
AnnaTossNumber = random.randrange(1, 101, 1) # генерация случайного числа от 1 до 100, не включая 101

if( AlexTossNumber > AnnaTossNumber):
print(«Алекс выиграл жеребьевку.»)
AlexScore = playDiceGame()
AnnaScore = playDiceGame()
else:
print(«Анна выиграла жеребьевку.»)
AnnaScore = playDiceGame()
AlexScore = playDiceGame()

if(AlexScore > AnnaScore):
print («Алекс выиграл игру в кости. Финальный счет Алекса:», AlexScore, «Финальный счет Анны:», AnnaScore, «\n»)
else:
print(«Анна выиграла игру в кости. Финальный счет Анны:», AnnaScore, «Финальный счет Алекса:», AlexScore, «\n»)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

importrandom

PlayerOne=»Анна»

PlayerTwo=»Алекс»

AnnaScore=

AlexScore=

 
# У каждого кубика шесть возможных значений

diceOne=1,2,3,4,5,6

diceTwo=1,2,3,4,5,6

defplayDiceGame()

«»»Оба участника, Анна и Алекс, бросают кубик, используя метод shuffle»»»

foriinrange(5)

#оба кубика встряхиваются 5 раз

random.shuffle(diceOne)

random.shuffle(diceTwo)

firstNumber=random.choice(diceOne)# использование метода choice для выбора случайного значения

SecondNumber=random.choice(diceTwo)

returnfirstNumber+SecondNumber

print(«Игра в кости использует модуль random\n»)

 
#Давайте сыграем в кости три раза

foriinrange(3)

# определим, кто будет бросать кости первым

AlexTossNumber=random.randint(1,100)# генерация случайного числа от 1 до 100, включая 100

AnnaTossNumber=random.randrange(1,101,1)# генерация случайного числа от 1 до 100, не включая 101

if(AlexTossNumber>AnnaTossNumber)

print(«Алекс выиграл жеребьевку.»)

AlexScore=playDiceGame()

AnnaScore=playDiceGame()

else

print(«Анна выиграла жеребьевку.»)

AnnaScore=playDiceGame()

AlexScore=playDiceGame()

if(AlexScore>AnnaScore)

print(«Алекс выиграл игру в кости. Финальный счет Алекса:»,AlexScore,»Финальный счет Анны:»,AnnaScore,»\n»)

else

print(«Анна выиграла игру в кости. Финальный счет Анны:»,AnnaScore,»Финальный счет Алекса:»,AlexScore,»\n»)

Вывод:

Shell

Игра в кости использует модуль random

Анна выиграла жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 5 Финальный счет Алекса: 2

Анна выиграла жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 10 Финальный счет Алекса: 2

Алекс выиграл жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 10 Финальный счет Алекса: 8

1
2
3
4
5
6
7
8
9
10

Игравкостииспользуетмодульrandom

 
Аннавыигралажеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны5ФинальныйсчетАлекса2

 
Аннавыигралажеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны10ФинальныйсчетАлекса2

 
Алексвыигралжеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны10ФинальныйсчетАлекса8

Вот и все. Оставить комментарии можете в секции ниже.

How does Random.js alleviate these problems?

Random.js provides a set of «engines» for producing random integers, which consistently provide values within , i.e. 32 bits of randomness.

One is also free to implement their own engine as long as it returns 32-bit integers, either signed or unsigned.

Some common, biased, incorrect tool for generating random integers is as follows:

The problem with both of these approaches is that the distribution of integers that it returns is not uniform. That is, it might be more biased to return rather than , making it inherently broken.

may more evenly distribute its biased, but it is still wrong. , at least in the example given, is heavily biased to return over .

In order to eliminate bias, sometimes the engine which random data is pulled from may need to be used more than once.

Random.js provides a series of distributions to alleviate this.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector